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A B S T R A C T   

Statistical learning (SL) is postulated to play an important role in the process of language acquisition as well as in 
other cognitive functions. It was found to enable learning of various types of statistical patterns across different 
sensory modalities. However, few studies have distinguished distributional SL (DSL) from sequential and spatial 
SL, or examined DSL across modalities using comparable tasks. Considering the relevance of such findings to the 
nature of SL, the current study investigated the modality- and stimulus-specificity of DSL. Using a within-subject 
design we compared DSL performance in auditory and visual modalities. For each sensory modality, two stimulus 
types were used: linguistic versus non-linguistic auditory stimuli and temporal versus spatial visual stimuli. In 
each condition, participants were exposed to stimuli that varied in their length as they were drawn from two 
categories (short versus long). DSL was assessed using a categorization task and a production task. Results 
showed that learners’ performance was only correlated for tasks in the same sensory modality. Moreover, par-
ticipants were better at categorizing the temporal signals in the auditory conditions than in the visual condition, 
where in turn an advantage of the spatial condition was observed. In the production task participants exag-
gerated signal length more for linguistic signals than non-linguistic signals. Together, these findings suggest that 
DSL is modality- and stimulus-sensitive.   

Introduction 

Statistical learning 

Statistical learning (SL) is a powerful cognitive tool to extract sta-
tistical regularities from sensory input, which enables learners to detect 
structure in the vast amounts of sensory information they are exposed to. 
This sensitivity to statistical regularities has been investigated exten-
sively in the field of cognitive science (Bogaerts, Frost, & Christiansen, 
2020) as well as in linguistics given the important role it is postulated to 
play in the process of language acquisition (Romberg & Saffran, 2010; 
Saffran, 2003). 

Conditional vs. distributional SL 
Two types of input regularities can be distinguished for SL (Siegel-

man et al., 2017). The first type pertains to sequential and spatial re-
lations between stimuli, such as the co-occurrence of particular sounds 
and shapes in time (e.g., Saffran, Aslin, & Newport, 1996; Turk-Browne, 
Jungé, & Scholl, 2005) or in space (e.g., Fiser & Aslin, 2001; Orbán, 
Fiser, Aslin, & Lengyel, 2008). Because this type of SL refers to the 
learning of regularities such as conditional probabilities, we refer to it as 
conditional statistical learning (CSL, see also Thiessen & Erickson, 2013; 
Growns, Siegelman, & Martire, 2020). As CSL helps to identify how 
sequences or complex scenes are formed from a set of discrete building 
blocks, it is often investigated in the context of speech segmentation and 
syntactic processing (Conway, Bauernschmidt, Huang, & Pisoni, 2010; 
Misyak & Christiansen, 2012) as well as in the context of visual 
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processing (Fiser & Lengyel, 2022). The second type of regularity per-
tains to the frequency distribution of individual exemplars. Distribu-
tional statistical learning (DSL) has mainly been investigated in the 
context of phonology and category learning (Maye et al., 2002, 2008). 

CSL and DSL are proposed to be supported by distinct yet interrelated 
memory processes and differ in the (implicit) knowledge acquired 
(Thiessen & Erickson, 2013). When facing a continuous sequential 
input, CSL relies on transitional probabilities to index sequential re-
lations within the input stream and extract novel discrete representa-
tions of repeating patterns (Thiessen et al., 2013). For example, the 
seminal study by Saffran and colleagues (1996) revealed that infants as 
young as 8 months old can track transitional probability information 
from an artificial speech stream of auditory syllables, allowing them to 
extract repeated words without any additional cues for word boundaries 
and to showcase familiarity with these words. In similar experiments as 
Saffran et al. (1996), this type of SL was found to facilitate the learning 
of various linguistic structures, including word order (Gervain, Mac-
agno, Cogoi, Peña, & Mehler, 2008), syntactic patterns (Gomez & 
Gerken, 1999), and phonotactics (Chambers, Onishi, & Fisher, 2003). 
Outside the linguistic domain, the sensitivity to conditional relation-
ships in sequential input was also demonstrated with visual (Kirkham, 
Slemmer, & Johnson, 2002; Zimmerer, Cowell, & Varley, 2010) and 
tactile stimuli (Conway & Christiansen, 2005; Conway & Christiansen, 
2006). In the context of spatial input, sensitivity to conditional regu-
larities was identified with visual stimuli featuring spatial configura-
tions where multiple elements were presented simultaneously (e.g., 
Fiser & Aslin, 2001; Orbán et al., 2008). Moreover, CSL was documented 
across a wide range of age groups (Raviv & Arnon, 2018; Saffran, 
Johnson, Aslin, & Newport, 1999) and even in non-human species 
(Milne, Petkov, & Wilson, 2018; Sonnweber, Ravignani, & Fitch, 2015). 
Taken together, these results show that the sensitivity to conditional 
regularities in the input is present not only in human language learning 
but also in other domains. 

By contrast, information regarding the frequency, variance, and 
context of multiple exemplars is aggregated during DSL. Thiessen et al. 
(2013) proposed that, unlike CSL, where the extracted patterns form 
discrete representations in long-term memory, it is the integration across 
such discrete representations that gives rise to learners’ sensitivity to the 
distribution underlying the input and the discovery of categorical 
structure. For instance, Maye and colleagues (2002) showed that infants 
can categorize speech sounds taken from a phonetic continuum ac-
cording to the bimodal frequency distribution of the input. After a 
familiarization phase with an input stream that either contained a 
bimodal or a unimodal frequency distribution of tokens from a [ta] to 
[da] continuum, only infants who were exposed to the bimodal distri-
bution successfully discriminated tokens from the endpoints of the 
continuum. This result indicated that infants use distributional infor-
mation to make sense of the acoustic variability that characterizes 
speech and learn the underlying phonetic structure of the language. 
Extending the results of Maye, Werker, and Gerken (2002), learning of 
the statistical distribution of sounds for forming phoneme categories was 
also documented in children (Vandermosten, Wouters, Ghesquière, & 
Golestani, 2019; see Cristia, 2018 for a review), adults (Hayes-Harb, 
2007; Maye & Gerken, 2011), and non-human species (Pons, 2006). 
Considering other domains and types of input, DSL has been demon-
strated with discrimination tasks of non-native lexical tones (Liu et al., 
2022), musical pitches (Ong, Burnham, & Stevens, 2017), as well as 
shapes that differ in size (Rosenthal, Fusi, & Hochstein, 2001) and 
human faces (Altvater-Mackensen, Jessen, & Grossmann, 2017). In 
addition, recent investigations on the effect of statistical regularities on 
visual selection have found that participants give attentional priority to 
locations in a visual display where targets are likely to appear and 
suppress locations where distractors appear with higher probability 
(Theeuwes, Bogaerts, & van Moorselaar, 2022). This finding shows that 
DSL can also contribute to optimizing attention allocation and visual 
processing. 

Although distributional patterns are a major component of language 
learning and general pattern detection, they have received much less 
attention. This is clearly illustrated in the review by Frost and colleagues 
(2019), which pointed out that the vast majority of SL studies have 
focused on sequential conditional regularities, using paradigms with 
embedded triplets and pairs akin to Saffran et al. (1996)‘s seminal study, 
or artificial grammar learning (Reber, 1969) which is commonly used in 
the implicit learning literature yet arguably measures a similar type of 
learning (Perruchet & Pacton, 2006; Christiansen, 2019). The focus of 
the current investigation is the modality- and stimulus-sensitivity of 
learning distributional regularities, and more specifically the learning of 
categories based on signals that vary in their length. In what follows we 
discuss previous research on the constraints on statistical learning at 
large, including CSL, as most works focused on the learning of sequential 
regularities and these findings set the stage for the current study and 
shaped our predictions. 

Constraints on SL 

DSL and CSL have both been demonstrated across sensory modalities 
(e.g., Auditory vs. Visual) and across stimulus types (Linguistic vs. Non- 
linguistic). Meanwhile, multiple studies that examined learning across 
different domains or modalities showed limited transfer, minimal 
interference or low correlation and thus reveal modality- and stimulus- 
specificity. This leads to the question of whether SL is a domain-general 
or domain-specific learning mechanism. The view proposed by Frost, 
Armstrong, Siegelman, and Christiansen (2015) suggests that SL is a set 
of domain-general principles for learning that are nevertheless subject to 
modality and stimulus constraints given the specific characteristics of 
the brain regions that are involved. We will discuss evidence for these 
constraints in more detail below. What is worth noting in preview is that 
much of what we know about SL as a general ability or learning principle 
comes from studies that specifically target CSL with sequential input, 
with only little known on how DSL adheres to these general patterns (e. 
g., Maye et al., 2002; Thiessen, 2011). 

Modality-sensitivity in CSL 
Initial work that investigated whether SL is bound by modality 

constraints revealed a mixed pattern of results for sequential regular-
ities. While some research reported different learning outcomes across 
modalities (e.g., Conway & Christiansen, 2005; Conway & Christiansen, 
2009; Milne et al., 2018), others found no clear learning advantage in 
either the visual or auditory modality (e.g., Zimmerer et al., 2010). 
Today, there is growing evidence that supports modality-sensitive 
models of SL (e.g., Frost et al., 2015; Krogh, Vlach, & Johnson, 2012; 
Pavlidou & Bogaerts, 2019; Silva, Folia, Inácio, Castro, & Petersson, 
2018). 

One of the first studies that asked whether CSL operates differently 
across domains was performed by Conway and Christiansen (2005), who 
directly compared performance in an artificial grammar learning task in 
the auditory, visual, and tactile modalities. Participants were exposed to 
a series of sequences generated according to an underlying grammar and 
subsequently had to judge the grammaticality of novel sequences. 
Despite the fact that all conditions had the same underlying structure, 
results showed that performance was better in the auditory condition 
versus the visual and tactile conditions. Additionally, there were qual-
itative differences between modalities: participants in the tactile group 
were more sensitive to sequence-initial information, while participants 
in the auditory group showed sensitivity to sequence-final information. 
These findings suggest that sensitivity to sequential conditional regu-
larities in a given sensory input is subject to modality constraints. These 
constraints have been underscored by later studies, such as one that 
made use of an embedded pattern paradigm which showed that visual 
and auditory CSL are affected differently by presentation rates: while a 
faster presentation rate improves learning in the auditory domain, it 
hinders learning in the visual domain (Emberson, Conway, & 
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Christiansen, 2011). This divergent timing effect is in line with results 
from perceptual studies, which suggest that the auditory modality lends 
itself better to processing rapid temporal information compared to the 
visual modality (e.g., see Grondin, 2010 for review). 

While the above studies show that sensitivity to sequential regular-
ities in the sensory input is not uniform across modalities, their between- 
subjects design did not allow for comparison at an individual level. What 
remains unclear is whether individuals’ sensitivity to statistical patterns 
in one modality is predictive of their sensitivity to similar patterns in 
another modality. In other words, are some individuals simply better 
than others at detecting statistical patterns across the board, or are these 
abilities in different sensory modalities uncorrelated even within an 
individual? To address this question, Siegelman and Frost (2015) tested 
subjects with a task battery of four CSL tasks that differed in the sensory 
modality, with stimuli that were either verbal or nonverbal, and 
sequential statistical contingencies that either spanned adjacent ele-
ments or concerned non-adjacent elements (i.e., auditory-verbal- 
adjacent; auditory-verbal-nonadjacent; auditory-nonverbal-adjacent; 
visual-nonverbal-adjacent). Interestingly, they found evidence for sta-
ble individual differences in a given task, yet no correlation between 
individuals’ performance on the different CSL tasks was observed. The 
researchers concluded that SL is not a unified capacity: people’s sensi-
tivity to sequential statistical patterns seems to be determined by the 
sensory modality and by the specific stimulus type (see also Siegelman 
et al., 2017). Furthering this componential view, Bogaerts and col-
leagues (2022) proposed that there might not even be such a thing as a 
“good statistical learner” in the absence of a general SL capacity that can 
sort individuals from bad to good learners. 

Although growing evidence points to modality-based differences in 
SL abilities, it is hard to draw clear conclusions regarding the generality 
of these findings for several reasons. First, only a few studies have 
compared SL performance across visual and auditory (unimodal) con-
ditions using a within-individuals design (Pavlidou & Bogaerts, 2019; 
Siegelman & Frost, 2015). Second, and perhaps most important, no 
study to date has examined modality-based differences in DSL. A series 
of studies have shown multimodal facilitation in distributional learning 
(e.g., Mani & Schneider, 2013; Mitchel, Gerfen, & Weiss, 2016; Teino-
nen, Aslin, Alku, & Csibra, 2008), but the effect of different modalities 
on the learning outcomes is yet to be explored. Considering that more 
and more studies are showing direct evidence of DSL for either auditory 
or visual categorization (e.g., Broedelet, Boersma, & Rispens, 2022; 
Jung, Walther, & Finn, 2021), the next step is to directly compare DSL in 
different modalities. The current study will do just that, but in addition 
investigates whether the specific nature of stimuli within a given sensory 
modality impacts learning. 

Stimulus-sensitivity 
A linguistic advantage? Does SL with linguistic input work differ-

ently than with other stimuli? Given that other species are also able to 
pick up statistical regularities, it is unlikely that SL has originally 
evolved for language learning (see review by Santolin & Saffran, 2018). 
Regardless, previous studies have shown that individual differences in 
SL are predictive of a wide range of language-related outcomes in both 
children (Arciuli & Simpson, 2012; Kidd, 2012; Shafto, Conway, Field, & 
Houston, 2012) and adults (Conway et al., 2010; Misyak & Christiansen, 
2012). Moreover, it was shown that unlike visual CSL (and most other 
cognitive abilities which improve with age), auditory CSL seems to be 
age-invariant and does not change much across childhood (Raviv & 
Arnon, 2018). The language-specificity of SL could be due to the audi-
tory input also being linguistic in nature (see also Boeve, Zhou, & 
Bogaerts, in press). Indeed, a follow-up study indicated that the devel-
opmental trajectories of visual and non-linguistic auditory SL are in fact 
similar when the auditory SL task used familiar sounds (e.g., a bird 
tweeting, a door opening) rather than syllables (Shufaniya & Arnon, 
2018). Learning linguistic materials and non-linguistic materials were 
also found to be differentially affected by concurrent motor production – 

the learning of linguistic sequences was hindered when participants had 
to whisper, whereas the learning of non-linguistic sequences was not 
(Boeve, Möttönen, & Smalle, 2024). Together, these findings suggest 
that linguistic information may be processed and learned differently 
compared to non-linguistic information. A likely explanation lies in 
human learners’ extensive previous exposure to sequences of linguistic 
auditory stimuli (e.g., syllables in speech; Siegelman, Bogaerts, Elazar, 
Arciuli, & Frost, 2018). 

Although learners’ prior knowledge about linguistic structure can 
affect SL performance both positively and negatively depending on the 
(mis)match of the to-be-learned regularities with participants’ prior 
knowledge (Elazar et al., 2022; Siegelman et al., 2018), evidence for a 
learning advantage with linguistic stimuli was found in the recent study 
of Lukics and Lukács (2022) that reported an overall advantage of 
auditory-linguistic stimuli compared to other types of stimuli (including 
visual-linguistic input). Notably, the effect of linguistic versus non- 
linguistic materials has only been investigated for sequential condi-
tional regularities, and there is currently no data on whether DSL shows 
a similar advantage for linguistic stimuli. 

Stimulus familiarity. Moving beyond differences in learning with 
linguistic and non-linguistic stimuli, Perfors and Kidd (2022) investi-
gated visual SL performance as a function of how familiar the stimuli 
were to learners. Perceptual fluency, capturing how efficiently people 
can encode the individual stimuli, was shown to be strongly driven by 
stimulus familiarity (whereas it was independent of stimulus 
complexity) and was positively correlated with the CSL performance. 
Considering that the above findings centered on a language-specificity 
effect on auditory CSL due to participants’ prior knowledge, the famil-
iarity of the stimuli seems to affect learners’ performance across 
modalities. 

Time versus space. Finally, visual CSL is also sensitive to whether 
the input is temporal (i.e., sequential) versus spatial. For example, when 
contrasting learning of statistically governed input that was either pre-
sented temporally (i.e., color squares appearing sequentially in the 
center of the screen) or spatially (i.e., the same color squares appearing 
simultaneously in four locations along a horizontal row), it was found 
that participants showed better learning in the spatial presentation 
format (Conway & Christiansen, 2009). Moreover, a faster stimulus 
presentation rate negatively affected performance only in the temporal 
task. 

The contrast between temporal versus spatial input has also been 
investigated in a recent study that directly compared participants’ per-
formance in CSL and DSL. Growns and colleagues (2020) conducted four 
SL tasks, testing the learning of conditional regularities and distribu-
tional regularities across time and space. Conditional regularities in time 
were operationalized as co-occurrences between centrally presented 
shapes, whereas spatial co-occurrences were pairs of shapes appearing 
with a predetermined spatial relationship in a grid. In the distributional 
version of the tasks, shapes were presented at the ‘arms’ of a series of 
snowflakes and each shape appeared with a different frequency. In the 
nonspatial task, appearances were evenly distributed across all arms, 
whereas in the spatial version each shape appeared with different fre-
quencies in different locations. In all tasks, learning was measured with 
a combination of pattern recognition and pattern completion trials 
testing the preference for a correct statistical pattern over a foil pattern. 
Significant but moderate correlations were observed among partici-
pants’ performance on all four tasks, and results of a principal compo-
nent analysis showed that a large proportion of the variance in 
performance was explained by a shared component. Interestingly, a 
smaller but substantial portion of the variance was accounted for by 
performance on each of the individual tasks. These findings suggest that 
visual SL of conditional and/or distributional regularities is the result of 
the interplay between a unified learning mechanism and individuals’ 
ability to encode specific input and extract specific types of regularities. 

In sum, a handful of studies so far have documented modality- and 
stimulus-specificity by examining learning in different sensory 
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modalities, and with different types of stimuli, including linguistic vs. 
non-linguistic, and temporal vs. spatial stimuli (see also Frost et al., 
2015, for review). However, the near-exclusive focus on CSL of 
sequential regularities leaves open the question whether modality- and 
stimulus-sensitivity also characterize DSL. In addition, previous works 
targeted the learning of patterns involving various stimulus identities, 
presented either sequentially or in spatial configurations, leaving un-
explored modality- and stimulus-effect in how people learn to distin-
guish between different versions of the same stimulus. 

The current study 

The current preregistered study focuses exclusively on DSL, testing 
learners’ ability to extract categorical information from continuous 
input based on its distribution and examining the modality-sensitive and 
stimulus-sensitive nature of this type of learning. The full preregistration 
can be found here: https://osf.io/34agt. More specifically, we ask:  

1. Is distributional SL a modality-sensitive ability?  
1. Is distributional SL a stimulus-sensitive ability? 

Based on previous studies of SL reviewed above, which showed that 
there are important differences between the visual and the auditory 
modalities (e.g., Emberson et al., 2011), linguistic and non-linguistic 
auditory stimuli (e.g., Siegelman et al., 2018), and temporal vs. spatial 
visual stimuli (e.g., Conway & Christiansen, 2009), we conducted a 
within-subject comparison of DSL abilities in four experimental condi-
tions, spanning different modalities and stimuli: Auditory-Linguistic 
condition, Auditory-Non-Linguistic condition, Visual-Temporal condi-
tion, and Visual-Spatial condition. This design will allow us to compare 
participants’ performance between sensory modalities (i.e., auditory 
versus visual) and between stimulus types within a modality (i.e., lin-
guistic versus non-linguistic stimuli in the auditory domain, and tem-
poral versus spatial stimuli in the visual domain). In all tasks 
participants learned about the length distributions of two categories of 
stimuli: short versus long. In temporal conditions, this length corre-
sponded to the duration of stimuli. In the Visual-Spatial condition length 
corresponded to the height of a stimulus (see Materials and Stimuli for 
details). 

In brief, each experimental condition consisted of three parts (see 
Procedure): (1) an exposure phase, (2) a categorization task, and (3) a 
production task. During the exposure phase, participants were exposed 
to signals from a bimodal distribution that varied in their duration or 
their height, with each signal being associated with one of two cate-
gories. Specifically, short and long signals corresponded to either 
“dangerous” or “safe” aliens. To assess participants’ knowledge of their 
input, participants were asked to categorize signals as well as produce 
typical signals of the categories they have learned, following van der 
Ham and de Boer (2015). In the categorization task, participants were 
exposed to all signals one by one, and for each signal they needed to 
indicate which category the signal belongs to. Their categorization ac-
curacy was then measured. In the production task, participants were 
asked to produce representative signals for each category using the 
computer interface, and their reproduction accuracy was measured by 
examining how much their productions deviated from their input (i.e., 
how accurately participants reproduced a representative signal for a 
given category). This is a unique design, considering that most SL studies 
only include an alternative forced-choice test to indicate learning with 
discrimination of the target items. 

Based on earlier SL studies and preliminary results from a pilot 
version of the current study (https://osf.io/bsyz3/), we expected DSL to 
be a modality-sensitive and stimulus-sensitive ability (as opposed to a 
unitary one). As such, we expected to find variable performance across 
modalities and across tasks. 

In the categorization task, we predicted higher categorization accu-
racy in the auditory modality compared to the visual modality due to the 

increased processing ability of durational information in the auditory 
modality (e.g., Grondin, 2010). Alternatively, it was also possible to see 
high accuracy scores in the Visual-Spatial task (but not the Visual- 
Temporal task, which is predicted to elicit the lowest performance) 
which would contribute to higher accuracy in the visual modality 
compared to the auditory modality. Within the auditory modality, we 
predicted higher categorization accuracy for linguistic stimuli compared 
to non-linguistic stimuli due to prior exposure to meaningful durational 
differences in speech input (e.g., Siegelman et al., 2018). Within the 
visual modality, we predicted higher categorization accuracy for spatial 
stimuli compared to temporal stimuli as previous work has shown that 
people are significantly better at learning and processing visual-spatial 
relationships compared to temporal ones (e.g., Conway & Christian-
sen, 2009). 

Following Frost et al. (2015), we did not predict any significant 
correlations between individuals’ categorization accuracy across mo-
dalities and stimuli, supporting the general hypothesis that DSL is a 
modality- and stimulus-sensitive ability. Note that low but significant 
correlations across conditions may suggest that there is both a shared 
component between the modalities and an independent component per 
modality. Considering that task reliability is critical for interpreting 
correlational findings, we also investigated the reliability of all tasks 
using a split-half correlation measure. 

In the production task, we predicted that participants would signif-
icantly exaggerate the learned categories, rather than reproduce them 
perfectly. This is because adult learners regularize variable input by 
using a maximization strategy in tasks that require high cognitive load 
(e.g., Ferdinand, Thompson, Kirby, & Smith, 2013; Hudson Kam & 
Chang, 2009; Hudson Kam & Newport, 2009). We predicted that this 
exaggeration will occur in one of two possible ways. The first possibility 
is significant deviation from the category mode: i.e., for the “long” 
category, participants would produce signals that are significantly 
longer than those they learned; for the “short” category, participants 
would produce signals that are significantly shorter than those they 
learned. The second (and not mutually exclusive) possibility is signifi-
cant exaggeration of the gap between the “short” and “long” categories, 
i.e., the mean difference between participants’ short and long pro-
ductions would be greater than the difference between these categories 
in the original stimuli. For production performances across modalities, 
we predicted no significant correlations between individuals’ produc-
tion deviation across modalities and stimuli. 

We also expected to find a correlation between participants’ cate-
gorization and production behavior, namely, that categorization accu-
racy would determine participants’ production behavior such that the 
amount of exaggeration in participants’ productions would be signifi-
cantly and positively correlated with how well they learned and cate-
gorized the original stimuli (i.e., better learning of the stimuli would 
lead to more deviation). This prediction is motivated by literature on 
rule-learning and categorization (e.g., Kuhl, 1991), which argues that 
the higher-level abstract representations formed from specific exemplars 
are often exaggerated with respect to the relevant/distinctive categori-
cal features, i.e., making the prototypical example of category X more X- 
like. We also considered the possibility that higher categorization ac-
curacy would in fact be associated with more precise productions (i.e., 
better learning would lead to less deviation). This result would support 
an exemplar-based, associative learning model for SL, which stores in-
dividual exemplars and does not readily form abstract categorical rep-
resentation (i.e., “non-analytical learning”, following Smith et al., 
2012). 

Data availability 

Data per individual participant and analysis scripts are accessible via 
our repository on the Open Science Framework: https://osf.io/vx35h/. 
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Methods 

Design 
The experiment was a within-subjects study with four experimental 

conditions: Auditory-Linguistic, Auditory-Non-Linguistic, Visual- 
Temporal, and Visual-Spatial. Each experimental condition consisted 
of three parts: a passive exposure phase (44 trials), a categorization task 
(55 trials), and a production task (16 trials). In each experimental con-
dition, participants learned to distinguish between two categories (i.e., 
dangerous and safe aliens) by learning their corresponding signals (i.e., 
‘Short’ or ‘Long’). 

The experiment was semi-randomized without replacement, with the 
following constraints: For every participant, the order of the four exper-
imental conditions was randomized under the constraint that the two 
auditory conditions cannot occur consecutively; the mapping between 
signals (short vs. long) and meanings (dangerous vs. safe alien) was 
randomized across the four experimental conditions under the 
constraint that the same mapping (e.g., long = safe) cannot occur in 
more than three experimental conditions; the order of the trials in the 
exposure phase was randomized under the constraint that the same 
signal cannot occur twice in a row. 

We examined participants’ performance on the categorization and 
production tasks across the different modalities. For the categorization 
task, we measured categorization accuracy. For the production task, we 
measured participants’ production deviation from the category modes 
(i.e., how much do they deviate from the category modes in absolute 
terms), and participants’ gap between the short and long categories (i.e., 
do they exaggerate or minimize the contrast between the categories in 
relative terms). 

Participants 
Participants were recruited through Prolific, an online participant 

database. Participants were paid GBP 7.50 for their participation. All 
participants were over 18 years old, and had no self-reported uncor-
rected visual or hearing difficulties. They were all English speakers with 
different language backgrounds. 

A total of 145 people participated, but 7 participants were excluded 
due to clicking on the same answer more than 20 times in a row in the 
categorization task (which indicates that they did not understand the 
task or did not perform it with sufficient intention, see preregistration). 
A further 19 participants were excluded because their screen resolution 
was below the minimum of 1024 x 768 px or they did not use a laptop or 
desktop (with the exception of one participant being kept for Visual- 

Temporal condition in both tasks because they sufficed the screen res-
olution criteria only in that condition), leaving a total of 118 partici-
pants for analysis (and 119 for the Visual-Temporal condition only). 

Materials and stimuli 
Two variables were manipulated for the stimuli: signal type and 

signal length. Each experimental condition had its own signal type (see 
Fig. 1). Auditory-Linguistic: a syllable [ʔaː] with a given duration; 
Auditory-Non-Linguistic: a simple tone with a given duration; Visual- 
Temporal: a red coloration that flashes with a given duration; Visual- 
Spatial: a flower stem with a given height. 

The auditory stimuli were created in PRAAT (Boersma & Weenink, 
2019). Specifically, the Auditory-Linguistic stimuli were based on a 
recording of a glottal stop followed by a long open-front unrounded 
vowel [ʔaː]. This was split into a consonant and a vowel part by in-
spection of the spectrogram. The length of the vowel part was then 
changed by a PRAAT script in such a way that the total stimulus had the 
desired length. The Auditory-Non-Linguistic stimuli were single tones of 
344 Hz. The visual stimuli were clipart images of a mushroom for the 
Visual-Temporal condition, and a sunflower head with a green rectangle 
of variable length (i.e., the stem), which was drawn by using the polygon 
component in PsychoPy. 

In the experimental conditions that used duration as the defining 
feature of the signals, the durations ranged from 313 ms to 811 ms in 
increments of 10 %. A typical signal from category 1 (‘Short’) had a 
duration of 416 ms; a typical signal from category 2 (’Long’) had a 
duration of 609 ms (see Fig. 2). The categories were characterized by 
means 420 ms and 615 ms, and standard deviations 57 ms and 83 ms 
(where the standard deviations are different because the durations were 
spaced exponentially). These distributions were identical to those in the 
pilot version of the study, ensuring their learnability. 

In the Visual-Spatial experimental condition, the unit of measure-
ment was pixels. The heights of the sunflower stems ranged from 78 to 
203 px in 10 % increments, which is ¼ * [duration in ms] of the 
experimental temporal conditions. A typical ‘Short’ stem was 104 px; a 
typical ‘Long’ stem was 152 px. The categories were characterized by 
means 115 and 154 px and standard deviations 17.5 and 20.8 px, 
respectively. This range of heights was chosen for a number of reasons. 
First, there was a proportional correspondence between these heights 
and the durations in ms. Second, this range allowed participants to 
exaggerate categories. Finally, the range was suitable for presentation of 
the images on both high-resolution screens (e.g., 1920 x 1080) and 
lower-resolution screens (e.g., 1024 x 768). The circle that indicates the 

Fig. 1. The four experimental conditions and demonstration examples for their corresponding audio and visual stimuli.  
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category was always 500 px in diameter, and was presented in the 
middle of the screen (i.e., position 0,0). The flowerhead (size: 120 * 120 
px) was always positioned at 125 px above the middle (i.e., position 
(0,125). The midpoint of the stem always falls at 60–2/[stem height] px. 

Procedure 

The experiment was created using PsychoPy experimental software 
(Peirce, 2007), and run through Pavlovia, the repository and launch 
platform for PsychoPy experiments. Participants were required to use a 
personal computer (instead of a phone or tablet). 

After signing the consent form, participants were asked some back-
ground questions: their age, which language(s) they speak, whether they 
have a learning disability (yes or no), whether they have been diagnosed 
with AD(H)D (yes or no), what type of device they are using, and 
whether the device uses a mouse, touchpad, or touch screen. The screen 
resolution was recorded to make sure that participants were using a 
screen that was compatible with the task. 

In the exposure phase, participants were exposed to two alien cate-
gories that send out signals of variable duration or height. For the two 
auditory conditions, participants heard the stimuli through the speakers 
of their device or through headphones. For the visual conditions, par-
ticipants saw the stimuli on their computer screens. During a given trial, 
the signal was presented simultaneously with an image that corresponds 
to the category it belonged to. Specifically, each signal was accompanied 
by a green or a red circle that indicated whether the signal came from a 
‘safe’ alien (green circle) or a ‘threat’ (red circle) (see Fig. 3A). The 
exposure phase was defined by an overlapping one-dimensional 
Gaussian probability-density function and was represented by ‘Short’ 
(Category 1) or ‘Long’ (Category 2) signals (see Fig. 2). There were 11 
unique signals in this signal space. The most extreme signals were only 
presented once, while the typical signals were presented 6 times, 
resulting in 44 exposure trials per participant. 

In the temporal conditions, an exposure trial showed the images of 
the alien and the circle for 2000 ms, and the signal always started 500 
ms after the start of the images. After each stimulus presentation, a blank 
screen was shown for 400 ms, after which the next trial started (see also 
Fig. 3A). In the visual-spatial condition, an exposure trial showed both 
the category and the stimulus for 500 ms. This duration was chosen 
because duration was fixed in this experimental condition, and 500 ms 
was around the midpoint of the continuum for the experimental tem-
poral conditions. After each presentation, a blank screen was shown for 

1500 ms, so that each trial lasted 2000 ms in total, after which the next 
trial started. As the trial ended with a blank screen, the additional blank 
screen of 400 ms (as in the temporal conditions) was not added in this 
experimental condition. 

Following the exposure phase, participants were tested with a cate-
gorization and a production task. Responses were submitted using a 
mouse or a touchpad: In the categorization task, participants selected 
their answer on the screen by clicking on it. In the production task, 
participants clicked their mouse or their touchpad to produce the 
signals. 

The categorization phase was the same in all four experimental 
conditions: signals were presented and categorized one by one. Pre-
sentation was exactly as it was in the exposure phase, except that the red 
or green circles were replaced with a white one. After the presentation of 
each signal, participants categorized the signal using a 6-point Likert 
scale (see Fig. 3B). Before selecting their answer, participants could 
choose to replay the signal once. Clicking the Likert scale ended the trial. 
Participants did not receive feedback on the accuracy of their answers. 
Each of the 11 signals was categorized 5 times, resulting in 55 catego-
rization trials per participant. 

In the production task, participants had to produce a typical signal 
for the two categories. In each trial, the target category was presented (i. 
e., the base image surrounded by a red or green circle), and participants 
could produce the corresponding signal by pressing and holding a button 
(see Fig. 3C). The signal would be presented for the entire duration of 
the button press, and up to 2500 ms max. In the duration conditions, 
participants can only press this button and hold once. Once released, 
participants could click the ‘next item’ button. In the spatial task, par-
ticipants could release and then re-press the button to further increase 
the height of the sunflower stem (i.e., they cannot make it smaller or 
redo the production). This change was included because pilot partici-
pants indicated that they often released the button too early, and 
therefore were unable to submit signals that reflected their representa-
tions of the categories. 

At the end of the experiment, each participant was asked which 
experimental condition they found the most difficult, and which they 
found the easiest (required question). We also asked them to share their 
learning strategy, should they have one (optional). Finally, they could 
add any comments and questions if they have any (optional). 

Fig. 2. Distribution of the ‘Short’ (Category 1) and ‘Long’ (Category 2) signals in the exposure phase of temporal tasks. The x-axis represents the duration of the 
signals in the two auditory tasks and in the visual-temporal task. The corresponding signal heights in the Visual-Spatial task are: 78, 86, 95, 104, 115, 126, 139, 152, 
168, 185, and 203 px. 
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Analyses 

Measuring categorization accuracy 
Categorization accuracy was measured in the following way: First, 

we calculated the probability of a given signal being assigned to the 
‘Short’ category during the training phase (see Fig. 2). Specifically, in 
the experimental conditions in which duration was manipulated, signals 
with a duration of 313 to 416 ms were always assigned to ‘Short’ (i.e., 
100 % of the time); signals with a duration of 458 ms were assigned to 
‘Short’ 83.33 % of the time (5/6 presentations); signals with the dura-
tion of 504 ms were assigned to ‘Short’ 50 % of the time; signals with the 
duration of 554 ms were assigned to ‘Short’ 16.67 % of the time (1/6 
presentations); and signals with the duration of 609 to 812 ms were 
never assigned to ‘Short’ (0 % of the time). In the Visual-Spatial task, the 
corresponding transformation was as follows: 78 to 104 px (100 %), 115 
px (83.33 %), 126 px (50 %), 139 px (16.67 %), and 152 to 203 px (0 %). 
Then, for each trial in the categorization testing phase, we calculated 
participants’ accuracy based on their chosen category, their confidence, 
and the probability of the given signal being assigned to the selected 
category, using the following symmetrical scoring method (Table 1): 

We used this scoring method because it captures the likelihood of a 
specific response being given based on the probability of the signal’s 

category during training2 (see Appendix C for more details). 

Measuring production performance 
Production performance was measured in two ways. The first mea-

sure, production deviation, was calculated as the deviation of the pro-
duced signal from the category modes (i.e., the ‘peaks’ of the 
distributions). In the experimental conditions in which the duration of 
the signal was manipulated, production deviation was measured in 
milliseconds. The peaks were at 416 ms for the ‘Short’ category and 609 
ms for the ‘Long’ category. In the Visual-Spatial task, production 

Fig. 3. The three phases of the experiment for the Auditory-Linguistic condition. Exposure phase (panel A), Categorization phase (panel B) and Production phase 
(panel C). A: In the Exposure phase, a trial is 2000 ms during which the image is shown. The signal is always presented 500 ms after the image onset, and ends before 
the end of the trial. B: In the categorization phase, the stimulus is always presented before the categorization task. If participants press the replay button, the image is 
presented in the area above the 6-point Likert scale of the Categorization task screen. C: In the production phase, the red rectangular button must be pressed to create 
a signal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

2 We also used transformed Brier scores (a standard method for measuring 
the accuracy of probabilistic predictions, see Appendix C) to calculate partici-
pants’ accuracy. In the pilot study, the Brier scoring method yielded similar 
results to our own scoring method, but the former was dispreferred given its less 
subtle and more conservative treatment of uncertainty. For example, when the 
signal itself was ambiguous (i.e., categorized at short 50% of the time during 
training), the transformed Brier scores assigned participants with a maximal 
accuracy of 0.49, even when they chose the so-called "correct" uncertain 
response (“Maybe short” or “Maybe long”). As such, we chose to use the scoring 
method depicted in Table 1 for the current study, which captures the intuitive 
accuracy scheme. 
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deviation was measured in px. The peaks of the distributions were at 104 
px for the ‘Short’ category, and 152 px for the ‘Long’ category. A positive 
production deviation indicates that participants were exaggerating the 
signals (i.e., producing an even shorter signal for the ‘Short’ category 
compared to its mode, or producing an even longer signal for the ‘Long’ 
category compared to its mode). 

The second measure, gap difference, was how much participants 
exaggerate the difference between the ‘Short’ and ‘Long’ categories with 
their reproductions. In the training data, the gap between the category 
modes is 193 ms for the temporal conditions or 48 px for the spatial 
conditions. A positive gap difference indicates that the reproduced gap 
was exaggerated from the modal differences between the two categories. 

For both measures, responses in the spatial condition were multi-
plied by 4 to match the scale of the temporal conditions. 

Linear mixed-effects models 
We examined participants’ performance on the categorization and 

production tasks across the different experimental conditions. We also 
tested the relationship between participants’ performance on these two 
tasks across conditions. These analyses were done using linear mixed- 
effects (LME) regression models generated by the lme4 and lmetest 
packages in R (Bates, Mächler, Bolker, & Walker, 2014; R Core Team, 
2021; Zeileis & Hothorn, 2002). All regression models included a fixed 
effect for Experimental Condition, which is a 4-level categorical variable 
with user-defined contrasts, coded to make the following comparisons: 
Auditory-Linguistic vs. Auditory-Non-Linguistic condition; Visual- 
Temporal vs. Visual-Spatial condition; Visual-Temporal vs. the two 
Auditory conditions. The last contrast captures the difference between 
the auditory and the visual modalities with respect to temporal stimuli. 

As for random effects, we aimed to use the maximal random effect 
structure justified by the design and our hypotheses, i.e., random in-
tercepts for participants and signal duration, as well as by-participant 
and by-signal random slopes with respect to the main effect of condi-
tion. In case the model did not converge with this maximal structure, we 
removed the random effects with the lowest variability, one at a time 
(Barr, Levy, Scheepers, & Tily, 2013). We used the p-values generated by 
the lmetest package in R, where we interpreted p < 0.05 as indicating 
that the specified fixed effect estimate is significant (Zeileis & Hothorn, 
2002). 

Correlations 
Prior to the correlational analyses we documented the split-half 

reliability of each task. A permutation-based split-half approach with 
5000 random splits was adopted to estimate the internal consistency of 
each experimental condition. The estimations were done using the 
splithalf package in R (Parsons, 2021; R Core Team, 2021). 

We then used Pearson’s product-moment correlation to examine the 
relation between individuals’ scores in the different experimental con-
ditions. We removed bivariate outliers for each correlation test using the 
Mahalanobis-distance method with a breakdown point of 0.25 (out-
liers_mcd function in the Routliers library, Leys, Klein, Dominicy, & Ley, 
2018). The number of outliers removed for each correlation test can be 
seen in Table B.1 in Appendix B. We used the p-values generated by the 
Hmisc package in R (Harrell & Dupont, 2023) and given that we looked 
at multiple correlations, the p-values were adjusted according to Bon-
ferroni correction. 

Results 

Results are reported for the statistical analyses of the categorization 
task (accuracy), the production task (deviation and gap difference), and 
the relation between the categorization and production measures. As a 
guide to what is a substantial set of analyses, we expected significant 
differences and no meaningful correlations across modalities and stim-
ulus types for all three task measures. Additionally, we predicted a 
significant effect of categorization accuracy on the production task 
measures. 

Categorization task 

Overall, the 118 participants achieved 80.84 % mean accuracy for 
the categorization task. For each experimental condition, the mean ac-
curacy score was 82.27 % (SD = 0.27) in Auditory-Linguistic, 81.38 % 
(SD = 0.27) in Auditory-Non-Linguistic, 76.14 % (SD = 0.30) in Visual- 
Temporal, and 83.56 % (SD = 0.27) in Visual-Spatial (see Fig. 4). 

Table 1 
Illustration of the scoring method used for the categorization task.  
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A LME model was used to predict categorization accuracy with 
experimental condition as a fixed factor.3 In the final model, random 
intercepts for participants and signal durations were included. The 
model syntax and the full results table are in the Appendix A (Model Eq. 
(A.1)). More importantly, we found no significant difference between 
the linguistic and non-linguistic auditory conditions. Comparing the two 
visual conditions, accuracy in the Visual-Temporal condition was 
significantly lower than that in the Spatial condition (β = − 0.07, t =
− 3.83, p < 0.001). Finally, comparing modalities, accuracy in the 
Visual-Temporal condition was significantly lower than that of the two 
auditory conditions (β = − 0.06, t = − 4.18, p < 0.001). 

Since the signal durations were consistent throughout the three 
temporal conditions, an additional ANOVA test was conducted to check 
if there was an effect of order on the categorization accuracy. No sig-
nificant improvement of performance was found (F(2,352) = 0.13, p =
0.88) across the three conditions. Tukey’s HSD Test for multiple com-
parisons showed that there was no significant difference between the 1st 
(mean = 0.79) and the 2nd (mean = 0.80) conditions (p = 0.94, 95% C. 
I. = [− 0.03, 0.04]), or between the 1st and the 3rd (mean = 0.80) 
conditions (p = 0.88, 95% C.I. = [− 0.03, 0.04]). 

Prior to the correlational analyses we evaluated the split-half reli-
ability for all conditions of the categorization task (see Table 2). 
Spearman-Brown corrected split-half correlation coefficients were 

above 0.80 for all conditions of the categorization task, indicating good 
task reliability so that it is meaningful to investigate the correlations 
between conditions. 

As seen in Fig. 5, the accuracy scores for conditions within the same 
modality significantly correlated with each other. Across the two mo-
dalities, categorization accuracy of auditory conditions significantly 
correlated with that of the Visual-Temporal condition. 

Production task 

Fig. 6 presents the production responses by signal categories (‘Short’ 
or ‘Long’) and experimental conditions. The figure shows that the pro-
duced auditory signals are longer than they actually were, whereas that 
was not the case for visual signals. To examine this trend, we looked at 
two production measures: (1) Production deviation (from category 
mode), which was the distance between the average response length (for 
short or long signals) and the corresponding mode line (416 for short 
and 609 for long); and (2) Gap difference, which was calculated by first 
obtaining the gap of average response length between the long and short 
signal categories and then compare that to the gap between the modal 
signals (i.e., 193). The average production deviation was 458.25 across 
the four experimental conditions (Auditory-Linguistic: 983.66, SD =
610.19; Auditory-Non-Linguistic: 868.22, SD = 506.45; Visual- 
Temporal: 7.45, SD = 406.58; Visual-Spatial: − 26.33, SD = 296.06). 
The mean gap difference across experimental conditions was 219.84, 
with a difference score of 242.4 (SD = 458.51) in Auditory-Linguistic, 
225.45 (SD = 370.02) in Auditory-Non-Linguistic, 209.04 (SD =

Fig. 4. Categorization accuracy by experimental condition. The box captures 
50% of data in each condition with the upper and the lower hinges corre-
sponding to 25th and 75th percentiles. The whiskers capture the data within 1.5 
interquartile range from the hinges. The line in each box is the median of the 
accuracy scores and the square indicates the mean for each experimental con-
dition. Dots represent individual participants. 

Table 2 
Split-half reliability results for the categorization task in each of the four 
experimental conditions.   

Auditory- 
linguistic 

Auditory-non- 
linguistic 

Visual- 
temporal 

Visual 
spatial 

Participants (N) 118 118 119 118 
Split-half 

coefficient 
r = 0.70 
95CI 
(0.62–0.77) 

r = 0.84 
95CI 
(0.79–0.88) 

r = 0.89 
95CI 
(0.86–0.92) 

r = 0.92 
95CI 
(0.90–0.94) 

Spearman- 
Brown 
correction 

r = 0.82 
95CI 
(0.76–0.87) 

r = 0.91 
95CI 
(0.88–0.93) 

r = 0.94 
95CI 
(0.92–0.96) 

r = 0.96 
95CI 
(0.95–0.97)  

Fig. 5. Correlation matrix for categorization accuracy across experimental 
conditions. The r-values in the plot reflect results after bivariate outlier 
removal. All p-values were corrected for multiple comparisons using Bonferroni 
correction. Correlation significance is marked with “*” as p < 0.05, “**” as p <
0.01”, and “***” as p < 0.001. Scatter plots and r-values without outlier 
removal can be found in Appendix B, Figure B.1. 

3 Since there is a sizeable negative skew in the categorization data, particu-
larly in the Visual-Temporal condition, we also conducted a Friedman rank sum 
test to compare the medians across the four experimental conditions (Auditory- 
Linguistic: 0.84, Auditory-Non-Linguistic: 0.84, Visual-Spatial: 0.88, Visual- 
Temporal: 0.82). One participant lacked data for three out of four experi-
mental conditions and was therefore removed to meet the complete block 
design assumption for the test. The test showed significant difference between 
the medians across all conditions, Fr = 60.209, df = 3, p <.001. For a follow-up 
pairwise comparison, two Wilcoxon’s signed ranks tests (Auditory-Linguistic vs. 
Visual-Temporal: Z = 0.85, p <.001; Auditory-Non-Linguistic vs. Visual- 
Temporal: Z = 0.79, p <.001) and another Friedman’s test (contrasts between 
Auditory-Linguistic, Auditory-Non-Linguistic, and Visual-Temporal: Fr =

12.197, df = 2, p <.05) comparing the Visual-Temporal condition with the two 
auditory conditions directly showed significant difference between the experi-
mental conditions. 
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474.58) in Visual-Temporal, and 202.47 (SD = 378.38) in Visual-Spatial 
conditions. 

A LME model was used to predict production deviation from mode 
(Model Eq. (A.2) in Appendix A). The final model had experimental 
conditions, category length, and their interaction as fixed factors. A full 
random effect structure for participants was also included. The model 
showed a significant intercept for deviation from mode (β = 142.11, t =
23.15, p < 0.001). There was a significant difference between auditory 
conditions (β = 31.66, t = 3.05, p < 0.01) but not visual conditions. A 
significant difference was also shown across modality conditions: 
Visual-Temporal production deviation was significantly smaller than the 
auditory production deviations (β = –233.01, t = − 24.06, p < 0.001). In 
addition, there was a significant difference in the production deviation 
based on category length β = − 54.44, t = − 7.92, p < 0.001). The de-
viation was significantly larger for the long categories than for the short 
ones. 

We used another LME model to predict the effect of experimental 
conditions on gap difference (Model Eq. (A.3) in Appendix A). The 
model included random intercepts for participants but no random effect 
of category’s true length or by-participant slopes. Results showed a 
significant intercept but no significant difference between stimuli types 
or modality (β = 54.13, t = 7.80, p < 0.001). 

We investigated the production results per conditions using a split- 
half reliability correlation measure (Table 3). The Spearman-Brown 
corrections were all 0.75 or higher. 

We also investigated the correlations between deviation from mode 
across experimental conditions using Pearson’s test with the multivar-
iate outliers removed accordingly (Fig. 7). After bivariate outlier 
removal, the scores of deviation from mode for the two auditory con-
ditions and the two visual conditions were significantly correlated. Thus, 
the production performance showed correlations exclusively within 
each modality condition. Although after Bonferroni correction, only the 
Auditory-Linguistic and Auditory-Non-Linguistic correlation stayed 
significant (p < 0.001). 

Fig. 8 displays the correlation results for the gap difference measure 
across experimental conditions. Unlike the production deviation from 

mode, the gap difference showed significant correlations within both 
modality conditions (Auditory: r = 0.47, t(1 0 1) = 5.33, p < 0.001; 
Visual: r = 0.51, t(1 1 6) = 3.50, p < 0.001). There were significant 
correlations between the temporal conditions as well (Auditory-Lin-
guistic and Visual-Temporal: r = 0.37, t(98) = 3.98, p < 0.001; 
Auditory-Non-Linguistic and Visual-Temporal: r = 0.50, t(97) = 5.68, p 
< 0.001). Overall, the pattern of correlation results for category differ-
ence across experimental conditions resembles that for the categoriza-
tion accuracy. 

Between production deviation and categorization accuracy 

Two LME models were used to predict production performances with 
fixed effects of categorization accuracy and experimental conditions 
(Model Eq. (A.4) & Eq. (A.5) in Appendix A). The model for production 
deviation of mode included random intercepts for participants and true 

Fig. 6. Production response by signal categories and experimental conditions. 
Data of the Visual-Spatial condition was rescaled (multiplied by four) to allow 
for comparison between the temporal and spatial tasks. The box captures 50% 
of data in each condition with the upper and the lower hinges corresponding to 
25th and 75th percentiles. Whiskers capture the data within 1.5 inter-quartile 
range from the hinges. The line in each box is the median of response means 
among all participants. The square inside the box indicates the mean for each 
category and condition. The dotted line indicates the category mode in dark 
grey for the ‘Long’ category and in light grey for the ‘Short’ category. Dots 
represent individual participants. 

Table 3 
Split-half reliability results for the production task in each of the four experi-
mental conditions. Panel a. reports results for the measure of production de-
viation from mode; panel b. for the measure of gap difference.  

a. Auditory- 
linguistic 

Auditory-non- 
linguistic 

Visual- 
temporal 

Visual- 
spatial 

Participants (N) 118 118 119 118 
Split-half 

coefficient 
r = 0.86 
95CI 
(0.81–0.90) 

r = 0.86 
95CI 
(0.81–0.90) 

r = 0.70 
95CI 
(0.53–0.81) 

r = 0.61 
95CI 
(0.42–0.73) 

Spearman- 
Brown 
correction 

r = 0.93 
95CI 
(0.90–0.95) 

r = 0.92 
95CI 
(0.90–0.95) 

r = 0.82 
95CI 
(0.69–0.89) 

r = 0.75 
95CI 
(0.58–0.84)  

b. Auditory- 
Linguistic 

Auditory- 
Non- 
Linguistic 

Visual- 
Temporal 

Visual- 
Spatial 

Participants 
(N) 

118 118 119 118 

Splithalf 
coefficient 

r = 0.70 
95CI 
(0.63–0.76) 

r = 0.69 
95CI 
(0.59–0.78) 

r = 0.87 
95CI 
(0.73–0.94) 

r = 0.92 
95CI 
(0.90–0.94) 

Spearman- 
Brown 
correction 

r = 0.82 
95CI 
(0.77–0.87) 

r = 0.81 
95CI 
(0.74–0.88) 

r = 0.93 
95CI 
(0.84–0.97) 

r = 0.96 
95CI 
(0.95–0.97)  

Fig. 7. Correlation matrix for deviation from mode measure across experi-
mental conditions. The r-values in the plot are results after bivariate outlier 
removal. All p-values were corrected for multiple comparisons using Bonferroni 
correction. Correlation significance is marked with “*” as p < 0.05, “**” as p <
0.01”, and “***” as p < 0.001. Scatter plots and r-values without outlier 
removal can be found in Appendix B, Figure B.2. 
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category length, as well as a by-participant random slope for the effect of 
modality. Since the model with maximal random effect structure failed 
to converge (singular fit), we had to remove the by-length random slope 
for the effect of modality. Unlike the prediction of better learning 
leading to more or less deviation in reproductions, no significant effect 
of categorization accuracy was found (β = 4.83, t = 0.14, p = 0.89). The 
model for production category difference included only random in-
tercepts for participants due to convergence failure of the maximal 
structure. The results showed a significant effect of categorization ac-
curacy as was predicted (β = 259.37, t = 6.70, p < 0.001). 

Discussion 

The goal of the current preregistered study was to investigate mo-
dality and stimulus differences in DSL by comparing the learning of 
categories from a continuous signal range (based on the frequency dis-
tribution of short and long signals) in the auditory and visual modalities, 

as well as across different types of stimuli within a modality. To test 
whether participants show enhanced performance for any particular 
type of stimuli, we compared learning with linguistic stimuli (syllable) 
and non-linguistic stimuli (tone) for the auditory conditions, and with 
temporal (flash) and spatial (stem shape) stimuli for the visual condi-
tions. Unlike previous SL studies that mostly measure learning with 
categorization accuracy, our study also included an extra production 
task to test DSL from an active learning perspective. Specifically, we 
analyzed the production data using two different measures: production 
deviation from the category mode, and the difference between the gap of 
the produced categories and the modal gap. The within-subject design of 
the experiment allowed us to investigate whether an individual’s per-
formance on a task in one modality is predictive of their performance in 
other modalities (as in Siegelman & Frost, 2015). Moreover, we looked 
at the relations between different learning measures and asked whether 
categorization accuracy predicts production behavior. A visualization of 
the summary of results can be seen in Fig. 9. 

Summary of results 

While participants showed successful learning of categories in all 
modality and stimulus conditions, a direct comparison of DSL across 
conditions revealed some important differences. In line with our pre-
dictions based on previous findings on CSL (Conway & Christiansen, 
2009; Grondin, 2010), durational information was better learned in the 
auditory modality, while spatial information was better learned in the 
visual modality. On the other hand, we did not find the predicted lin-
guistic advantage within the two auditory conditions. 

Our design also included a production task. Compared to the original 
signals from the training distribution, participants in all conditions 
produced signals that were significantly exaggerated, namely, further 
from the category modes and with greater differences between cate-
gories. Notably, participants who learned better (as measured during the 
categorization task) also produced a bigger gap between the short and 
long categories. This suggests that the production measure of gap dif-
ference might be a better predictor of learning when compared to the 
measure of deviation from mode. 

On the individual level, we found significant correlations across both 
modalities and stimuli in the categorization task and in one of our 
production measures (i.e., gap difference). Participants’ learning and 
reproduction were positively correlated in conditions that shared a 
modality or when the stimuli were all temporal in nature which aligns 
with previous correlational findings (Siegelman et al., 2018; Growns 

Fig. 8. Correlation matrix for gap difference measure across experimental 
conditions. The r-values in the plot are results after bivariate outlier removal. 
All p-values were corrected for multiple comparisons using Bonferroni correc-
tion. Correlation significance is marked with “*” as p < 0.05, “**” as p < 0.01”, 
and “***” as p < 0.001. Scatter plots and original r-values can be seen in Ap-
pendix B, Figure B.3. 

Fig. 9. Summary of results. The color of cells indicates whether a prediction is met (green) or not (red). Four experimental conditions are abbreviated as AL 
(Auditory-Linguistic), ANL (Auditory-Non-Linguistic), VT (Visual-Temporal), and VS (Visual-Spatial). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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et al., 2020). The results of production deviation from mode were 
slightly different, with a significant correlation only between the audi-
tory conditions. No significant correlation was found across sensory 
modalities even when they both used temporal stimuli. The two visual 
conditions did not significantly correlate, which may be due to the lower 
reliability of the production task in the Visual-Spatial condition. 

Overall, the observed pattern of correlations suggests that DSL is 
characterized by a certain degree of modality- and stimulus-sensitivity. 
Specifically, conditions that matched in either modality or stimulus type 
showed higher correlations than those that did not. However, our results 
do not support a strong modality-specific or stimulus-specific scenario, 
as such accounts would predict no correlations across modalities or tasks 
with different stimulus types (cf. Frost et al., 2015). Notably, the effects 
of modality and stimulus type were not additive; a match for both mo-
dality and stimulus type did not further increase the correlations found 
between conditions. In the following discussion, we will link our find-
ings to current accounts of SL, and discuss potential limitations of our 
experiment. 

Modality- and Stimulus-Specificity in DSL 

A theoretical account 
Previous CSL studies found that people do not show a uniform 

sensitivity to statistical regularities across different input modalities (e. 
g., Conway & Christiansen, 2005; Emberson et al., 2011) and this in-
dependence was shown at both group and individual levels (Siegelman 
& Frost, 2015). Nevertheless, correlations between auditory and visual 
CSL performances were present in more recent studies (e.g., Siegelman 
et al., 2018). To account for both types of findings, Frost et al. (2015) 
proposed that individual SL performance results from constraints 
determined by specific input properties and domain-general computa-
tional mechanisms. Specifically, the process of encoding an internal 
representation of a given stimulus would go through computations 
instantiated in the designated cortical areas (e.g., auditory and visual 
cortex) and thus naturally takes the input modality into account. Since 
each sensory cortex is sensitive to different types of information, the 
encoding process will be affected accordingly. For example, the auditory 
cortex is more sensitive to temporal vs. spatial information, whereas the 
visual cortex is more sensitive to spatial vs. temporal information (Chen 
& Vroomen, 2013; Conway & Christiansen, 2009). 

Our findings are consistent with Frost et al. (2015)‘s theoretical ac-
count as we observed moderate correlations that suggest some level of 
generality in our DSL data, while also revealing constraints imposed by 
input modality and stimulus type. The auditory stimuli were better 
categorized than the Visual-Temporal stimuli, likely due to the different 
sensitivity between auditory and visual cortex to temporal information. 
Regarding the effect of stimulus type, there was indeed a higher cate-
gorization accuracy in the Visual-Spatial than the Visual-Temporal 
condition. These effects of modality and stimulus align with those pre-
viously found for CSL (Conway & Christiansen, 2005; 2009; Emberson 
et al., 2011). The alignment suggests that, despite the potential differ-
ences in their underlying memory process (Thiessen et al., 2013), DSL 
and CSL share similar constraints of modality and stimulus type. It may 
imply that both types of SL are supported by a unified mechanism. 
However, since both DSL and CSL commence with an encoding phase 
where modality and stimulus constraints may already be at play, the 
communal effect of constraints on learning outcomes could be mediated 
through the shared encoding component of the two SL processes. 

On another note, recent literature suggests that simple learning 
mechanisms such as Hebbian learning, typically linked to associative 
learning (Arndt, 2012), may also underlie SL (e.g., Goujon, Didierjean, & 
Thorpe, 2015; Schapiro & Turk-Browne, 2015; Endress & Johnson, 
2021). In our task, the observed learning performance could in principle 
be explained by the learning of simple associations between the unam-
biguous signals and the labels of “safe” and “dangerous”. Although the 
positive prediction of significant exaggeration in gap difference by 

categorization accuracy may suggest formation of categorical repre-
sentations rather than learning of individual exemplars (as hypothesized 
based on Kuhl, 1991 in The Current Study), it remains crucial for future 
research to further elucidate the mechanism(s) underlying the learning 
of novel categories. One concrete avenue would be to focus on the 
learning of categories with more overlap, increasing the ambiguity of 
signal-to-label mappings. 

Effect of previous experiences 
It can be noted that the higher categorization in Visual-Spatial than 

Visual-Temporal stimuli may also be attributed to a familiarity effect. In 
their study targeting visual CSL, Perfors and Kidd (2022) demonstrated 
that the outcome of SL depends on individuals’ perceptual fluency, their 
ability to quickly and efficiently encode the input. Since both modality 
and stimulus type can affect perceptual fluency, the particular input 
which is easier for participants to encode should be learned better. In our 
study, the superior learning observed for our Visual-Spatial stimuli may 
result from its natural occurrence in real-life settings, which makes it 
more familiar for participants compared to the relatively unnatural 
Visual-Temporal input. 

Although a familiarity effect was suggested considering the differ-
ence between our experimental design and the real-life language setting, 
our participants did not show an advantage in learning linguistic over 
non-linguistic input as was found in previous CSL works (see Siegelman 
et al., 2018). Originally, we predicted that due to participants’ prior 
exposure to meaningful durational differences in speech input (and 
particularly with different vowel lengths as being different phonemes), 
they would show better categorization and production of linguistic 
stimuli. However, participants in our experiment performed equally 
well on both linguistic and non-linguistic tasks. The lack of a linguistic 
advantage could potentially be attributed to the difference between the 
stimuli used in DSL and CSL studies: our DSL linguistic condition 
included only one syllable ([ʔaː]), while classic CSL tasks usually include 
a large set of different syllables (e.g., typically around 10–15 syllables). 
Thus, participants’ prior linguistic knowledge may have a greater 
impact on CSL tasks simply because there is more linguistic material to 
be processed (see Siegelman et al., 2018 for discussion). Alternatively, 
considering participants’ overall high performance, the categorization 
task could be too easy for the participants to accommodate the facili-
tation of previous experiences. 

In the current study, we used durational stimuli for the temporal 
conditions. In the Auditory-Linguistic stimuli, this meant that the two 
categories were differentiated by the presence of a long or a short vowel. 
In some languages, vowel duration is already an important categorical 
cue that differentiates between phonemes and thus between meanings 
(e.g., “sika” and “siika” in Finnish, Iivonen & Harnud, 2005). Given that 
our participants came from diverse linguistic backgrounds, it is possible 
that there was a non-uniform influence of prior knowledge in the cate-
gorization and production of the linguistic stimuli, but not for other 
stimuli. To further investigate the impact of prior (linguistic) knowledge 
on the learning of durational categories, future work could directly 
compare native speakers of languages that either do or do not include 
durational contrasts in vowels (e.g., Dutch vs. Hebrew, respectively). If 
prior language experience with vowel duration leads to enhanced per-
formance in linguistic tasks that rely on such a cue for differentiating 
between categories, we would expect better categorization and pro-
duction accuracy in speakers of languages such as Finnish or Dutch. 

Measuring DSL with production accuracy 
As the first study applying a production task to DSL, we analyzed the 

production data using two different measures that potentially tap into 
different aspects of production accuracy, i.e., the deviation from mode 
and the gap difference. However, the results were inconsistent across 
these two measures which makes it harder to draw clear conclusions 
with respect to modality and stimuli differences. Notably, unlike the 
pattern obtained from the categorization task and from our measure of 
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production gap difference, the measure of production deviation from 
mode did not show stimulus-specificity (i.e., there were no significant 
correlations across the temporal stimuli for auditory and visual condi-
tions). Participants also had more deviation from mode in the auditory 
conditions than in the visual conditions, whereas no such difference was 
found in the measure of gap difference. This inconsistency may stem 
from differences in task design between modality conditions. While 
participants were allowed to stop and start the increase of the visual 
image in the visual tasks, they could only stop once in the auditory tasks. 
Although this design was refined from the pilot study to accommodate 
participants’ feedback on the visual task (section Procedure), it inad-
vertently encouraged “over-exaggeration” for the auditory stimulus. 
Participants could not stop short and continue to increase as the signal 
approaches the desired audio target as for the visual stimulus. On the 
other hand, pressing the mouse for reproducing signal durations was an 
artificial setup, in particular for the Auditory-Linguistic stimuli as it did 
not correspond to real-life language production. Moving forward, in-
vestigations could explore more naturalistic tasks, such as actual syllable 
production, while ensuring an unbiased production procedure for both 
auditory and visual conditions. 

In addition, production deviation from mode did not correlate with 
categorization accuracy, further indicating its limited predictive ability 
of participants’ learning. That is, it was not the case that better learning 
of the categories led to more exaggeration in production, unlike what we 
found for the measure of gap difference. Our original prediction was 
based on work by Raviv and Arnon (2018) and Johnson, Siegelman, and 
Arnon (2020), which revealed that learners who show increased sensi-
tivity to regularities in the input also show more extreme biases for 
creating structure when reproducing signals they learned during 
training. Future work should explore such cross-modal correlations for 
CSL, since a production task may also provide valuable insights into 
understanding the possible difference in CSL performance caused by 
task types. 

Bearing in mind that SL abilities vary among individuals, it is 
important to ensure that our measures are reliable and therefore valid 
for further inferential analysis (Erickson, Kaschak, Thiessen, & Stutts 
Berry, 2016; Siegelman et al., 2017; Siegelman & Frost, 2015). Although 
the production task was newly introduced, our split-half results are 
promising with regard to the reliability of the tasks. Future works should 
also evaluate test–retest reliability for both old and new measures of 
cognitive and behavioral performances so that the true effect of the in-
terventions can be better detected and revealed. 

Conclusion 

This study examined learners’ distributional learning using a within- 
subjects design, comparing performance across different sensory mo-
dalities (auditory vs. visual), signal types (temporal vs. spatial), and 
cognitive domains (linguistic vs. non-linguistic), filling an important gap 

in the SL literature. We examined participants’ learning using two 
different sources of information: categorization behavior (indicating the 
degree to which participants have learned the stimuli they were exposed 
to), and production behavior (indicating which categories were formed 
by the participants, and how each category is prototypically repre-
sented). Our findings revealed that DSL is influenced by modality and 
stimulus conditions, aligning with prior reports on CSL. Additionally, 
DSL performance tended to correlate across conditions, suggesting some 
level of generality in the mechanism. These findings contribute to a 
more comprehensive understanding of SL by filling in knowledge gaps 
for distributional learning behaviors. Furthermore, we encourage future 
research to consider more possible factors in designing multimodal 
stimuli and adopt the critical criteria regarding test reliability for further 
advancement in the experimental approach. 
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Appendix A:. Models 

Eq. (A.1). Categorization accuracy. 
Categorization Accuracy ~ Condition + (1 + Condition|Participant) + (1 + Condition|Duration).    

Estimate SE df t-value p-value 

(Intercept)  0.81  0.03  12.52  28.39  <0.001 
Auditory-Non-Linguistic vs. Linguistic  0.01  0.01  118.00  1.00  0.32 
Visual-Temporal vs. Spatial  − 0.07  0.02  117.43  − 3.83  <0.001 
Visual-Temporal vs. Auditory  − 0.06  0.01  117.80  − 4.18  <0.001  

Eq. (A.2). Production deviation from mode 
Deviation from Mode ~ Condition*Category + (1 + Condition*Category|Participant). 
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*Pre-registration model: Deviation from mode ~ Condition + (1 + Condition|Participant).    

Estimate SE df t-value p-value 

(Intercept)  142.11  6.14  118.51  23.15 <0.001 
Auditory-Linguistic vs. Non-linguistic  31.66  10.38  117.86  3.05 <0.01 
Visual-Temporal vs. Spatial  9.58  8.19  118.11  1.17 0.24 
Visual-Temporal vs. Auditory  –233.01  9.69  115.75  − 24.06 <0.001 
Category value (‘Short’ vs. ‘Long’)  − 54.44  6.87  115.25  − 7.92 <0.001 
Category X Condition(Auditory-Linguistic vs. Non-linguistic)  − 3.53  11.82  117.18  − 0.30 0.77 
Category X Condition(Visual-Temporal vs. Spatial)  − 2.30  11.65  112.61  − 0.20 0.84 
Category X Condition(Visual-Temporal vs. Auditory)  5.51  9.71  111.78  0.57 0.57  

Eq. (A.3). Gap difference 
Gap Difference ~ Condition + (1|Participant).    

Estimate SE df t-value p-value 

(Intercept)  54.13  6.94  112.59  7.80  <0.001 
Auditory-Linguistic vs. Non-linguistic  4.24  11.24  347.85  0.38  0.71 
Visual-Temporal vs. Spatial  2.75  11.22  348.89  0.24  0.81 
Visual-Temporal vs. Auditory  − 5.12  9.71  349.23  − 0.53  0.60  

Eq. (A.4). Relation between production deviation from mode and categorization accuracy 
Deviation from Mode ~ Categorization Accuracy * Condition + (1 + Condition|Participant) +(1|Category).    

Estimate SE df t-value p-value 

(Intercept)  110.49  35.25  20.54  3.13  <0.01 
Categorization Accuracy  4.83  35.59  248.22  0.14  0.89 
Auditory-Linguistic vs. Non-linguistic  − 49.16  91.65  135.68  − 0.54  0.59 
Visual-Temporal vs. Spatial  19.39  29.04  213.74  0.67  0.51 
Visual-Temporal vs. Auditory  − 202.09  59.36  241.11  − 3.40  <0.001 
Categorization Accuracy X Condition (Auditory inguistic vs. Non-linguistic)  95.68  111.08  136.07  0.86  0.39 
Categorization Accuracy X Condition (Visual-Temporal vs. Spatial)  − 14.58  36.40  205.19  − 0.40  0.69 
Cateogry X Categorization Accuracy (Visual-Temporal vs. Auditory)  − 35.03  72.51  246.95  − 0.48  0.63  

Eq. (A.5). Relation between production category difference and categorization accuracy 
Category Difference ~ Categorization Accuracy * Condition +(1|Participant).    

Estimate SE df t-value p-value 

(Intercept)  − 153.72  32.18  471.01  − 4.78  <0.001 
Categorization Accuracy (mean per pp)  259.37  38.73  463.60  6.70  <0.001 
Auditory-Linguistic vs. Non-linguistic  − 155.45  94.15  380.74  − 1.65  0.10 
Visual-Temporal vs.Spatial  − 44.66  60.77  415.42  − 0.74  0.46 
Visual-Temporal vs. Auditory  − 183.70  64.22  416.06  − 2.86  <0.01 
Categorization Accuracy X Condition (Auditory-Linguistic vs. Non-linguistic)  193.41  114.19  380.92  1.69  0.09 
Categorization Accuracy X Condition (Visual-Temporal vs. spatial)  92.50  74.96  416.79  1.23  0.22 
Categorization Accuracy X Condition (Visual-Temporal vs. Auditory)  246.70  79.83  414.93  3.09  <0.01  

Appendix B:. Correlation scatter plots  

Table B1 
Numbers of bivariate outliers removed for each correlation test using the Mahalanobis-distance method with a breakdown point of 0.25 (outliers_mcd function in the 
Routliers library, Leys et al., 2018).  

Taskmeasures Correlationtests  

Auditory Linguistic ~ 
Auditory Non-Linguistic 

Auditory Linguistic ~ 
Visual Temporal 

Auditory Linguistic 
~ Visual Spatial 

Auditory Non- 
Linguistic ~ Visual 
Temporal 

Auditory Non 
Linguistic ~ Visual 
Spatial 

Visual Temporal ~ 
Visual Spatial 

Categorization 
Accuracy 

9 17 14 25 17 25 

Deviation from 
Mode 

9 10 11 7 8 13 

Category 
Difference 

15 18 19 19 18 24 
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Fig. B1. Correlation matrix for categorization accuracy across experimental conditions. The scatter plots are based on the results after bivariate outlier removal. Both 
r-values with outlier removal and original r values (presented in parenthesis) are provided. All results were corrected using the Bonferroni test. Correlation sig-
nificance is marked with “*” as p < 0.05, “**” as p < 0.01”, and “***” as p < 0.001. 
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Fig. B2. Correlation matrix for deviation from mode across experimental conditions. The scatter plots are based on the results after bivariate outlier removal. Both r- 
values with outlier removal and original r values (presented in parenthesis) are provided. All results were corrected using the Bonferroni test. Correlation significance 
is marked with “*” as p < 0.05, “**” as p < 0.01”, and “***” as p < 0.001. 
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Fig. B3. Correlation matrix for gap difference across experimental conditions. The scatter plots are based on the results after bivariate outlier removal. Both r-values 
with outlier removal and original r values (presented in parenthesis) are provided. All results were corrected using the Bonferroni test. Correlation significance is 
marked with “*” as p < 0.05, “**” as p < 0.01”, and “***” as p < 0.001. 

Appendix C:. The scoring function 

The problem of quantifying the participants’ categorization behavior of stimuli is comparable to quantifying the quality of models that predict the 
probability of an outcome. An example would be meteorological models that generate the probability that it is going to rain the next day. Our 
participants need to specify their confidence that a stimulus falls into a certain category, but the stimuli themselves may be ambiguous. Hence for some 
stimuli the best thing participants can do is to provide a probabilistic statement, i.e., that the stimulus is likely to belong to a category. This is very 
similar to what models predicting probabilities do. 

Measures to evaluate probabilistic predictors are called scoring functions, and an example that is applicable in case probabilities can be zero is the 
Brier score, B. For binary events where there are two possible outcomes (such as in our experiment where a category is either long or short) called E 
and not E, it is defined here as follows: 

B = 1 − 1/N
∑N

i=1
(πi + ei)

2 (B1) 

where N is the number of events that is predicted, πi is the predicted probability of event i having outcome E, and ei is the outcome of event i, 
defined to be 1 if the outcome was indeed E and 0 if the outcome was not E. The Brier score is a proper score in the sense that if the predicted 
probabilities are the correct ones, it results in the best possible score. 

Scoring functions are generally used to evaluate actual predictions, our aim is slightly different: we want to evaluate the quality of the judgment of 
participants about the category a stimulus represents. Mathematically, this is equivalent to how good participants’ predictions would be when making 
repeated predictions about the category when observing a stimulus. We therefore assume N is large, and that in p (l |s) N cases the stimulus s represents 
the’long’ category and in (1 − p (l |s)) N cases it represents the ’Short’ category. From Fig. 1 it can be seen that this probability can take on the value 0, 
1/6, 1/2, 5/6 and 1. The different judgments from which the participants can choose can be approximately translated into predicted probabilities πj 
(where j can take on the value of each judgment). In order to make the discussion concrete we can set these probabilities to (1, 0.8, 0.6, 0.4, 0.2, 0) in 
order of certainty of the judgment being that the stimulus represents the long category. The equation for the Brier score then takes the following form: 

Bs,j = 1 − p(l|s)
(
1 − πj

)2
+(1 − p(l|s) )π2

j (B2)  

for each combination of stimulus s and judgement j. 
The actual values are then as follows: 
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Table C1 
Illustration of actual Brier score values for stimulus categorization.   

Probability of Stimulus being long p(l|s) 

0 1/6 1/2 5/6 1 

Participant 
Response 

Assigned probabilityπj      

Definitely Long 1 0  0.17  0.50  0.83 1 
Probably Long 0.8 0.36  0.46  0.66  0.86 0.96 
Maybe Long 0.6 0.64  0.67  0.74  0.81 0.84 
Maybe Short 0.4 0.84  0.81  0.74  0.67 0.64 
Probably Short 0.2 0.96  0.86  0.66  0.46 0.36 
Definitely Short 0 1  0.83  0.50  0.17 0  

where the highest scores for each stimulus are given in italics, highlighting that it is indeed a proper score (i.e., the judgment that is closest to the actual 
probability receives the highest score). 

Although the Brier score would be usable, we felt it was unsatisfactory on two accounts: Firstly, it does not take into account that participants 
sometimes cannot do better than saying that a stimulus maybe represents a category, as some stimuli can indeed represent both categories. For 
instance, in the case of a completely ambiguous stimulus (half of the time representing the long category, half of the time representing the short 
category) participants can only achieve a maximum score of 0.74. Secondly, it gives relatively high scores to judgments that have to be considered very 
wrong, for instance they receive a score of 0.46 for classifying as’probably long’ a stimulus that in reality only represents the long category one out of 
six times. Although especially the second issue could be addressed by tuning the πj and doing a non-linear scaling of the Brier score, we designed a 
more intuitive scoring matrix, inspired by the Brier score. We therefore used the following simplified scoring table:  

Table C2 
Illustration of simplified scoring values for stimulus categorization.   

Probability of Stimulus being long p(l|s) 

0 1/6 1/2 5/6 1 

Participant 
Response 

Assigned probabilityπj      

Definitely Long 1 0 0 0.20 1 1 
Probably Long 0.8 0.20 0.20 0.60 1 0.80 
Maybe Long 0.6 0.40 0.40 1 0.60 0.60 
Maybe Short 0.4 0.60 0.60 1 0.40 0.40 
Probably Short 0.2 0.80 1 0.60 0.20 0.20 
Definitely Short 0 1 1 0.20 0 0  

As can be seen from the elements highlighted in italics, it also has the property of a proper score. The correlation of the Brier score table and our own 
scoring table is 0.88. It is true that even the current scoring function is toned done from the Brier score (i.e., 0.20 accuracy instead of 0.46 for cat-
egorizing a stimulus as “probably long” when it has 1/6 probability being a long category), it still gives advantage to participants who tend to respond 
with middle-of-the-road options. We thus looked at frequency distribution of participant responses per probability category and found no particular 
tendency of responding with the middle options (Figure C.1). This was also the case across every experimental (modality) conditions.

Fig. C1. The proportion of participants categorization responses by signal duration/probability of target signal being assigned to the short category across the 
different modality conditions. 
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